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EDGE SIMULATION LABORATORY PROJECT REPORT, CY 2010 

In 2010 The Edge Simulation Laboratory (ESL) embarked upon the plan laid out in the renewal 

proposal submitted in December 2009.  This proposal called for initially parallel efforts 

addressing the physics of the closed-flux-surface pedestal region, using existing computational 

tools (GYRO, BOUT++) and analytic modeling, and physics of the scrape-off layer via 

development of the new edge gyrokinetic code COGENT.  Progress in the former area is 

described in a series of monthly progress reports prepared by General Atomics; these are 

attached as a set of appendices (describing work done in the month prior to the indicated date).   

Progress in the latter area, as well as associated theoretical development,  is described below. 

 

COGENT CODE DEVELOPMENT AND VERIFICATION ACTIVITIES 

 

COGENT is a 4
th

-order finite-volume continuum code being developed collaboratively by a 

math team at LLNL and LBNL and a physics team based at LLNL (with participation from also 

from UCSD).  In 2010 the principal progress areas were improvements in numerics and addition 

of collision models to the existing closed-flux-surface (“core”, or “core-plus-limiter” model), 

validation activities including geodesic-acoustic mode (GAM) simulations and collisional 

relaxation and neoclassical tests, and implementation of ingredients necessary for the extension 

of the code to true divertor geometry. 

 

GEODESIC ACOUSTIC MODE (GAM) SIMULATIONS 

 

In late 2009 we began a campaign with COGENT to verify the code by performing simulations 

of geodesic acoustic modes (GAMs) and comparing with other codes and theory.  The intention 

was to perform simulations with the same parameters as used in the multi-code comparison of 

Xu et al. [1].  As of the end of 2009 we had first simulations in hand, but comparison was limited 

by numerical issues which interfered with finding a converged, accurate potential, by some 

incorrect understanding of the assumptions and parameters in some of the comparison 

simulations, and by lack of an in-house capability to evaluate the theory of Gao et al. [2].   

 

During 2010, the numerical issues were resolved by a more numerically appropriate formulation 

of the coefficient of the Boltzmnan electron model, by resolving issues associated with fourth-

order accurate products of quantities, and by finding some bugs, while the understanding of 

assumptions and parameters in comparison simulations was resolved by discussion with authors.   

 

The development of an in-house capability to evaluate the theory of Gao entailed developing an 

accurate procedure for numerical solution to Gao's dispersion relation,  

 

 

 

 

with x = kq(2v||
2
 + v!

2
)/2 v||, " = qR#/vti, k = k! vti/#, vti = (wTi/mi)

1/2
,  and v is normalized to vti.  

The procedure entailed development of an asymptotic analysis for small x  that takes into account 

correct Landau contours and determination of the coefficients aj in the Bessel function expansion  
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The resulting procedure was applied to evaluation of the dispersion relationship for ! = Te/Ti  = 0 

and 1 and compared with the simulation results.  As shown in Fig 1, excellent agreement is 

found for the GAM decay rate between COGENT and analytic theory.  For ! =0  there is 

comparably good agreements with XGC-1; the tests of the latter cod keep only the flux-surface-

averaged component of the potential only and so cannot be applied to ! =1.  The residual 

differences with GYRO may be due to a different way of measuring decay rates.  (The decay rate 

for COGENT results is obtained by determining the value of ! such that exp(!t)"(t) is 

approximately constant for some period of time following a short initial transient.)  Excellent 

agreement is also found for the real frequency.  Comparison of the change of decay rate between 

with several refinements of grid resolution demonstrates clear fourth-order convergence, as 

expected for COGENT’s discretizations.  These results were presented in Ref. 3. 

 

Impementation of Collision Models in COGENT 

 

Several model collision operators have been implemented and tested in the COGENT. These 

include a model “parallel drag-diffusion” collision operator, the Lorentz operator, and the 

linearized Fokker-Plank collision operator in the form proposed by Abel et al in Ref. [4].In 

addition, the analytical formulation of nonlinear isotropic model for collisions has been 

developed. In what follows, a brief description of collision models along with the summary of 

initial tests is presented.  

 

    
Fig 1. Comparison of GAM damping rates from COGENT and other codes with Gao theory 



(a) “Parallel drag-diffusion” collision operator 

A model “parallel drag-diffusion” operator,  

                                             

! 

C
||
f[ ] = " coll

#

#v
||

v
||
f +

T

m

#f

#v
||

$ 

% 
& 

' 

( 
) ,                                                      (1) 

provides drag and diffusion in the parallel velocity space. Here, !coll is the collision frequency, 

and m and T correspond to the species mass and equilibrium temperature, respectively. The 

implementation of this collision model has been tested for the Pastukhov-type problem, where 

particles confined along the magnetic field direction by a square electrostatic potential well 

become untrapped due to the re-population of the high-parallel-velocity distribution function by 

collisions. Excellent agreement with an analytical theory was observed, and the results are 

presented in Fig.2. The figure shows the decay of particle distribution function f due to the 

parallel loss over a potential barrier. The results correspond to the case of weak collisions, where 

the collision frequency is much less than the parallel bounce frequency.  

(b) Lorentz collision operator 

The Lorentz operator,  
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provides pitch angle scattering in the velocity space. Here, !coll is the collision frequency, !=v||/v 

and v are the particle pitch-angle variable and velocity, and a gyrophase-independent distribution 

function is assumed. Note that although the Lorentz operator conserves particles energy 

analytically, spurious diffusion in the energy space appears (Fig. 2) due to approximate (finite-

difference) numerical evaluation of the operator using the parallel velocity v|| and magnetic 

moment µ coordinates. Therefore, it is of particular importance to develop and implement a 

higher-order finite-difference scheme that can minimize the effects of spurious energy diffusion. 

Figure 3 demonstrates that the spurious diffusion is significantly suppressed (to a tolerable level) 

for the case where the 4-th order accurate numerical scheme is implemented.  

 

In order to test the performance of the implemented Lorentz operator, full-f simulations of 

neoclassical transport have been performed. The results are found in very good agreement with 

the analytical theory developed in Ref. [5] (see Fig.4).  

(b) (c) 

Fig.2. COGENT simulations (dots) of the decay of f versus time in an electrostatic well with the particle 

collision model of Eq. (1). The asymptotic decay obtained analytically is given by the dashed line. Here, 

a fitting parameter is used to locate the vertical position of the dashed line. 



 

(c) Linearized model Fokker-Plank collision operator 

For the case where a distribution function is close to a Maxwellian distribution, i.e. f=Fm+"f, 

"f<<Fm, an accurate collision model can be provided by a linearized model Landau collision 

operator. A general form of a like-particle (inner-species) linearized collision operator is given 

by  

                                               

! 

C f , f[ ] " C #f ,FM[ ] + C FM ,#f[ ],                                                   (3) 

 

where  is the full Landau operator, the “test-particle” term  describes collisions 

with a Mawellian background, and  is customary referred to as the “field-particle” 

term. The “test-particle” term can be evaluated analytically, and for the case where the 

distribution function is gyrophase-independent is given by  

 

 

Fig.3. COGENT simulations of the pitch-angle scattering of an initial distribution function represented 

by a blob in the velocity space. The figure shows plots of (a) the initial distribution (t=0), (b) distribution 

function at t=4/"coll obtained making use of the second-order accurate implementation of the Lorentz 

operator, and (c) distribution function at t=4/"coll obtained makin use of the fourth-order accurate 

implementation of the Lorentz operator. The solid black curves illustrate the contours of a constant 

energy. Note that different scales in color schemes are used in the frames, and the maximum values of 

the distribution function in frames (a), (b), and (c) are related as 1:0.13:0.067, correspondingly. 

Fig.4. COGENT simulations (dots) of the radial neoclassical ion transport for the case of the Lorentz 

collision operator. Shown the plots of  (a) particle flux, and (b) heat flux versus the normalized collision 

frequency  

! 

" * = #$3 / 2" 2qR
0
vth . The red and blue lines correspond to the analytical calculations [5] in the 

banana and the Pfirsch-Schluter regimes, respectively. The parameters of the simulation correspond to 

safety factor q=3, inverse aspect ratio #=0.1, ion temperature T=3 KeV, ion mass mi=2mp, major radius 

R0=45.6 m, toroidal magnetic field on axis B0=7.5T,  inverse temperature and density gradients $n= 

$T=10/R0, and the magnetic flux tubes have nested circular cross-sections. 

(b) Radial particle flux Radial heat flux (a) 



 

                        ,         (4) 

where the definition of the transport coefficients in Eq. (4), i.e., "D, "s, and "||, can be found in 

[4]. Note that the test-particle term includes both pitch-angle scattering and energy diffusion. The 

exact evaluation of the “field-particle” term however still requires intensive numerical 

calculation of the Rosenbluth potentials, and therefore it is typically modeled by “restoring” 

terms, which provide conservation properties of the full linearized collision operator. The 

implementation of the linearized collision operator in COGENT makes use of the model field-

particle term proposed by Abel, et al [4], 
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The field-particle term [Eq. (5)] provides conservation of particles, the parallel momentum and 

energy of the distribution; obeys H-theorem, vanishes on a perturbed Maxwellian, efficiently 

dissipates small-scale structure in the velocity space; and can be conveniently generalized for 

gyrokinetic simulations taking into account finite Larmor radius (FLR) effects [4]. 

 

The fourth-order accurate numerical implementation of the linearized collision operator given by 

Eq. (3)-(5) has been recently accomplished in COGENT. The initial successful tests of the test-

particle collision term include the analysis of the parallel momentum relaxation (for the case of a 

non-zero initial parallel velocity), and the thermal relaxation (for the case where the temperature 

of the particle distribution is different from the temperature of a Maxwellian background). 

Furthermore, the conservative properties of the full linearized like-particle collision operator 

(including both test-particle and field-particle terms) is observed.  

 

(d) Nonlinear isotropic model for collisions 

A linearized collision operator becomes of limited validity in a tokamak edge region where a 

particle distribution function can be substantially different from a Maxwellian distribution. For 

instance, non-thermal tails may develop due to the fact that the mean free path for the 

suprathermal particles can become comparable to a connection length in the scrape-of-layer 

(SOL) region. Furthermore, anisotropy in the distribution function in the edge region can 

develop due to the presence of particle loss regions the particle phase-space.  

 

A simple nonlinear collision model taking into account isotropic nonthermal effects has been 

formulated by straightforward generalization of the linearized model described in the previous 

section. The nonlinear model operator for like-particle collisions has the form  
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where 
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sin#d#f$  is the isotropic part of the distribution function (a gyrophase-

independent distribution function is assumed).  Note that the first term on the right hand side 

describes collisions with the isotropic nonthermal background, and has the form of Eq. (4), with 

the transport coefficient now expressed in terms of 1D velocity integrals over the isotropic 
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background. The field-particle term (second term on the right-hand-side) is obtained by 

straightforward generalization of the analysis in Ref. [5], and is given by  
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P[ f ] = 2" s v( )v||U #f[ ] + " E v( )v 2Q #f[ ] + Av
2 + B( ).                 (7)   

For the case of a Maxwellian background it reduces to the field-particle term given in Eq. (5), i.e. 
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E
,U = U,Q = Q. It should be noted that a similar nonlinear model for the 

test-particle collision term was implemented in the particle-in-cell PIC simulations performed in 

Ref. [6], however a different method (based on the Langeven-equation approach to collisions) 

was used to restore the parallel momentum and energy of the particle distribution.  

 

Incorporation of radial diffusion model 

 

We are in the process of incorporating into COGENT a radial diffusion operator to model the 

effects of anomalous transport in the 4D version of the code.  This is following on similar work 

done in the predecessor code TEMPEST, in which a diffusion operator with a velocity-dependent 

diffusion coefficient, in combination with an advection operator, was devised to allow 

reproduction  in a kinetic code of the effects of an arbitrary diagonal transport matrix in a fluid 

code, when applied to a Maxwellian distribution function.  The goal here is to provide a “kinetic 

UEDGE”, and also to provide the basis for eventual coupling of 4D (transport) and 5D 

(turbulence) versions of the kinetic code.  A simple form of the diffusion operator is now 

operational in the code and passing verification tests (comparison with analytic solutions for pure 

diffusion); extension of the implementation is now in progress. The current work, like the 

preceding TEMEPST work, is being carried out by a graduate student at UCSD with coaching 

from LLNL staff and UCSD faculty. 

 

Numerical/algorithmic advances 

 

The gyrokinetic Poisson equation with Boltzmann electrons constitutes a nonlinear equation to 

be solved for the potential. Using a standard Newton iteration, a Jacobian system must be solved 

at least approximately in each iteration. The Jacobian is the sum of the linear gyrokinetic Poisson 

operator and a contribution from the Boltzmann relation. Ordinarily, such Poisson-Boltzmann 

operators are quite easy to invert, since the Boltzmann relation adds an additional positive 

symmetric term to an already positive symmetric operator. In this case, however, the dependence 

of the electron-density prefactor n0 [ne = n0exp(e"/Te)] on the potential [n0 = #ni$/#exp(e"/Te)$ 
where # $ denotes  a flux-surface average in the denominator and either a flux-surface or global 

average in the numerator)] is such that the contribution to the Jacobian from the Boltzmann 

relation is nonsymmetric. A more serious issue is the fact that for for the typical situation where 

radial scale lengths are many gyroradii, the Jacobian matrix has a near null space comprised of 

vectors constant along flux surfaces. We therefore developed a strategy for removing the null 

space component via a tridiagonal solve in the radial direction, combined with a BiCGStab (bi-

conjugate gradient stabilized) algorithm to obtain the solution component in the null space 

complement, with multigrid as a preconditioner. 

 

We also made refinements to the treatment of fourth-order averages of products of vector 

quantities that better accounted for the strong asymmetry of directions along and across magnetic 

field lines.   These refinements, in combination with the improved treatment of the gyrokinetic 

Poisson-Boltzmann equation described above, enabled the successful GAM tests described 



above, in particular enabling good convergence of the field solve, the favorable comparison with 

analytic theory, and an explicit demonstration of fourth-order convergence of the GAM 

simulations with respect to mesh resolution.  In particular, the fourth-order accuracy of the GAM 

results was confirmed via Richardson extrapolation using a sequence of grids successively 

refined in all phase space directions.  In Figure 5, the differences eN # ||nN % n4|| are plotted for 1 

$ N $ 3, approximating the error in the solutions on the first three refined grids by assuming that 

the solution on the fourth refined grid is exact. The black curve (only whose slope and not 

vertical position is relevant) indicates fourth-order convergence.  These tests were described in 

Refs. [7] and [3]. 

 
Fig. 5. Error as a function of refinement level, assuming the solution on the finest grid is exact. The 

black curve indicates a fourth-order convergence rate.  

 

Progress toward a divertor version of the code 

 

A key ingredient in our strategy for deploying a divertor-geometry version of COGENT is the 

exploitation of mapped multiblock technology, whereby the closed-flux-surface edge, scrape-off-

layer, and private-flux regions of a tokamak are described by separate blocks of grids which 

communicate through their common boundaries.  This functionality was recently released in 

CHOMBO, and we are in the process of implementing this technology in COGENT, revamping 

data structures and generalizing interfaces as needed.   We have also been developing the 

software necessary to provide the needed metric coefficients for numerically prescribed divertor 

configurations and extending the geometry classes as needed to handle the increased geometric 

complexity; this included developing interpolation and smoothing algorithms that correctly 

capture the effects of the separatrix X point to the requisite (4
th

) order. We anticipate a 



functioning advection code this spring and intend to have a fully functional code (including field 

solve and at least some colllisional capability) by the end of FY 2011. 

 

Development of associated theory 

 

We have been working over the past three years on a formal development of gyrokinetic 

equations in orderings that are more appropriate for the plasma edge than the traditional equation 

sets.  Our progress in the past year has included the following: Tthe gyrokinetic minimal models 

(both canonical and symplectic versions) were recast in a more systematic way as reductions of 

the full gyrokinetic equations under a specific ordering on the electromagnetic perturbations.  We 

extended Dimits-LoDestro-Dubin 1992 (VExB << Vth) ordering gyrokinetic derivation to toroidal 

geometry. This is particularly useful in that the resulting equations are essentially the same as 

previous sets derived under more restrictive standard orderings, and a numerical implementation 

path for these is already in place.  And, we extended large-flow [VExB/Vth =O(1)] ordering 

gyrokinetic derivation to toroidal geometry and electromagnetic perturbations.  This work was 

presented in invited talks at the 2010 Sherwood Fusion Theory Conference and at the Cambridge 

UK Workshop on Gyrokinetics in Laboratory and Astrophysical Plasmas, (August 10, 2010). 
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NEO has been used to analyze the deuterium ion flow of DIII-D L-mode
plasmas in the edge. In these studies, a new method has been adopted
to determine the shift in the parallel flow due to the radial electric field.
The equilibrium-scale radial electric field, which is an input in NEO, is usu-
ally determined via the pressure balance equation, using carbon impurity
toroidal and poloidal flow measurements along with the measured radial
pressure gradients. However, the carbon poloidal flow measurements often
have large uncertainties and are usually neglected from this equation under
the assumption that the poloidal flow term is small compared to the toroidal
flow term. This is generally true in the core but not in the edge. Thus, for
these studies, in which we are interested in comparing the deuterium ion
parallel flows, we have used the carbon toroidal flow measurements as a cal-
ibration to determine the radial electric field by forcing the NEO value to
match the measured value at θ = 0. This recalibration method is valid only
the weak rotation limit, since then the neoclassical flow coefficient does not
depend on the radial electric field. The results are shown in figure 1. The
measurements, which are not shown in this figure, were done outside the
separatrix. Initial comparisons find that the NEO results and the measure-
ments qualitatively approach each other as ρN → 1, indicating that the flow
remains essentially neoclassically-driven even close to the plasma edge. In
figure 1, we confirm that the component of the ion parallel flow due to the
radial electric field, u‖,Er = −cI/(ψ′B)∂Φ/∂r, is dominant compared to the
component due to the pressure gradients, which includes the neoclassical
flow coefficients, u‖,p = cT0aI/(zaeψ′B)[1/Lna + (1 − ka)/LTa], until very
close to the edge and thus we not just comparing the calibrated components
in the experimental comparison.

1



−30

−20

−10

0

10

20

30

40

50

60

70

80

90

100
u
‖,

i(
θ

=
0)

(k
m

/s
)

0.7 0.8 0.9 1
ρN

134046 2505
134046 3505
134059 2505
134059 3505
134060 2505
134060 3505
134074 2505
134074 3505

−30

−20

−10

0

10

20

30

40

50

60

70

80

90

100

u
‖,

i(
θ

=
0)

co
m

p
on

en
ts

(k
m

/s
)

0.7 0.8 0.9 1
ρN

Figure 1: Radial profiles of the deuterium ion parallel flow from NEO for
various DIII-D L-mode plasmas. The figure on the left shows the total flow,
while the figure on the right shows the components due to the pressure
gradients (dashed lines) and the components due to the radial electric field
shift (dotted lines).

GYRO simulations of NSTX plasmas have found that finite β′ can pro-
duce a hybrid ITG-KBM mode. This is shown in figure 2. Here we have used
the new GYRO eigenvalue solver. In these studies, we have varied β at fixed
values of β′. All of the results include the full electromagnetic perturbations
(δA‖ and δB‖). For low values of β′, we find a distinct dominant ITG mode
at low β and a distinct dominant KBM at high β. As β′ increases from
zero, the ITG mode becomes more unstable while the KBM becomes more
stable. When β′ reaches 1/10 of the actual experimental value, we see that
a cusp forms in the linear growth rate plot just below βe = βe,exp. The real
frequency plot shows that here the ITG and KBM branches have merged
to form a continuous mode. For the hybrid mode, at large β, δA‖ exhibits
the KBM-like symmetry, in which the real and imaginary components are
out-of-phase with each other. As β decreases, the imaginary component
becomes smaller more quickly and eventually reverses to become in-phase
with the real component, which is the ITG-like symmetry.
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A new tool, VGEN, is being developed to compute the radial electric
field based on NEO for input to GYRO, TGYRO, and subsequent NEO
calculations. For GYRO and NEO, the source of the input Er is often
arbitrary, i.e. using some combination of measured flows, computed flows,
and analytic theory, since the measured impurity poloidal rotation data
is often either unavailable or has large uncertainties. The new tool takes
as input either both the measured impurity toroidal and poloidal velocity
profile data or just the measured impurity toroidal velocity profile data.
Given both profiles, Er is computed from force balance,

Er =
1

naea
|∇r|

∂p

∂r
+ vϕBθ − vθBϕ , (1)

in a manner that is consistent with the GYRO/NEO geometry implemen-
tation. Given only the toroidal velocity, Er is computed by matching the
NEO value with the measured value at the outboard midplane. This was
tested previously in the weak rotation limit in DIII-D L-mode deuterium
flow studies (see our Feb. 2010 report). In this limit, the neoclassical flow
coefficient is independent of Er and thus,

−c
dΦ

dψ
=

v
(imp)
ϕ,measured − v

(imp)
ϕ,neo(Er = 0)

R
. (2)

In the strong rotation limit, the problem of v
(imp)
ϕ,measured = v

(imp)
ϕ,neo becomes

an expensive nonlinear root finding problem, which we solve using Newton’s
method. In each case, the corresponding NEO-computed flows for all species,
assuming either weak or strong rotation as specified, are also given as output.
VGEN is implemented using the NEO subroutine interface, which itself has

1



recently been upgraded to allow for general Grad-Shafranov equilibrium
geometry in radially local mode. Comparisons of the three methods are
in progress. Preliminary results using data from DIII-D L-mode discharges
indicate that the finite-Mach number corrections are small. Small differences
are also found between the VGEN force balance Er and the previously-
computed force balance Er near the magnetic axis and near the plasma
edge, most likely due to geometry assumptions.
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NEO has been upgraded to account for the direction of the magnetic
field. Two input parameters, ip ccw and bt ccw have been introduced to
specify the orientation of the plasma current and toroidal magnetic field.
While this does not affect the particle and energy fluxes, it does affect the
flows and momentum flux.

Studies of the accuracy of the new NEO-based tool VGEN, which com-
putes the flows and radial electric field, are on-going. Results for a typical
DIII-D L-mode shot are shown in figure 1. Here we find that Er is mainly
determined by the toroidal flow component. The component of Er due to
the poloidal flow is small but not negligible in the core. In the edge, the
poloidal and toroidal flow components are comparable. Small differences
are seen between a method which uses force balance but neglects vθ and the
new method which computes Er by forcing the NEO-computed vϕ to match
the measured value. It is not yet clear why a larger improvement was not
seen with the latter method. Only slight differences were found by including
finite Mach number effects. The effect of finite Mach number on both the
deuterium and carbon flows is negligible, as shown in figure 2. In this figure,
it is clear from the deviation between the measured and NEO-computed val-
ues that the poloidal flow is not purely driven by neoclassical processes for
this case. More cases are needed to fully study the approaches.

Studies of the effects of compressional magnetic perturbations on the
linear gyrokinetic stability of unusually high-beta DIII-D H-mode plasmas
(which operate within 10% of the high-n ideal beta limit) using the new
GYRO eigenvalue solver find a non-negligible destabilizing effect at low kθρs

in the core (r/a=0.6). Unlike our previously-studied NSTX case, here we
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Figure 1: The radial electric field profile for DIII-D L-mode shot #101391
computed using VGEN, given as input the measured poloidal and toroidal
carbon flows, in addition to the measured equilibrium profile data. Here
we compare the (exact) force-balance calculation (“fb”) with various ap-
proximations which neglect the poloidal flow data. The curves labeled “vϕ

match” compute Er by matching the NEO and measured carbon toroidal
flow at the outboard midplane, assuming either the weak or strong rotation
limit.

find that the dominant mode at the experimental β is an ITG mode, rather
than a hybrid ITG/KBM mode. Little effect was seen for the higk-k ETG
mode. Extensions to the edge are in progress. Preliminary results at r/a=0.9
find a similar effect at low kθρs.
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Figure 2: The corresponding NEO-computed carbon and deutrium toroidal
and poloidal velocity profiles for DIII-D L-mode shot #101391 using the
VGEN-computed Er. The measured flows are available only for carbon. In
the weak rotation limit, the poloidal flows do not depend on Er. For VGEN
method “vϕ match”, the NEO-computed carbon vϕ is forced to match the
measured value.
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Further analysis of the DIII-D HEP benchmarking case has been done
with NEO, focusing on the local physics. Comparisons with analytic theory
for this more realistic plasma are consistent with our previous comparisons
for a simple s-α test case. Specifically, as shown in figure 1, we still find that
Chang-Hinton theory overestimates the ion diffusivity over the entire profile.
The deviation in the pedestal region is about 35%. The Sauter model ac-
tually follows the NEO results quite well, only slightly underestimating the
bootstrap current, with the largest deviation ( 30%) seen near the magnetic
axis. Surprisingly, the Sauter model shows only a 4% error in the pedestal
region, though we believe that this is fortuitous. Hinton-Hazeltine theory
generally underestimates both χi and j‖, though the qualitative trends are
correctly captured. Small differences were found in the NEO local transport
results in the near-edge region (ρN > 0.8) with geometry model, collision
model, and electron model. Specifically, using the general equilibrium with
up-down asymmetry provides a 2-4% correction compared to the Miller equi-
librium results. Using the zeroth-order Hirshman-Sigmar model provides a
17% correction compared with using the less accurate Connor model. Note
that this conclusion is based on simulations which include the carbon im-
purities and it had previously been found that the deceleration effect due
to dynamic friction, which is included in the zeroth-order Hirshman-Sigmar
but not in the Connor model, is important for species of similar masses.
Also, we found that including the complete kinetic electron physics provides
a 5-10% correction compared to the adiabatic electron case.

Collisions have been added to the new GYRO field eigensolver. For
simplicity, we have for now included only the pitch-angle scattering operator,
as we have previously verified that the corrections on the gyrokinetic stability

1



and transport due to the momentum-conserving term, which is complicated
to implement due to the energy coupling it introduces, are negligible (see
our May 2009 report). Nevertheless, even with just the Lorentz operator,
the inclusion of collisions significantly increases the computational expense,
since the inversion of the matrix representing the LHS of the gyrokinetic
equation is now coupled in velocity space. For both the collisional case
and the collisionless case, the solver has been optimized, using BLAS and
LAPACK for all expensive matrix operations (LU decomposition, inverse,
matrix-matrix multiply), and it is parallelized. Studies of our high-beta
NSTX discharge case (#132641) find that the collisions are stabilizing on the
low kθ hybrid ITG/KBM mode, and, even with large collision frequency, no
dominant or sub-dominant micro-tearing modes are observed for this case.
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The NEO-based tool VGEN for computing Er and the poloidal and
toroidal flows has been integrated into the GYRO/TGYRO/NEO experi-
mental profiles tool iterdb2gyro. This will allow for the rotation input pa-
rameters from NEO to be used in GYRO and TGYRO and for the flows to
be used as a diagnostic in TGYRO. The PEQDSK format for the density and
temperature profile data, which is used as input for ELITE, has also been
added to iterdb2gyro. The PEQDSK file and GEQDSK geometry file form
a complete set for generating the GYRO/TGYRO/NEO INPUT profiles
for a pure plasma. Extensions of the PEQDSK to include impurity pro-
file data and the measured velocity flows are being considered. Re-analysis
of finite-orbit-width effects on the neoclassical transport in the DIII-D H-
mode pedestal using these more accurate profiles and including the general
geometry effects is in progress.

Further analysis of the DIII-D L-mode deuterium parallel flows in the
edge has focused on distinguishing the neoclassical and classical (diamag-
netic) components and on an apparent correlation between the trend of the
deuterium ion and carbon impurity flows at θ = 255◦ (near the bottom of
the tokamak) but not at θ = 0◦ (outboard midplane). Here we define the
components of u‖ as

uE = −

cI

B

dΦ

dψ
(1)

up = −

cI

B

1

zaen0a

dp0a

dψ
(2)

uk =
Ka

n0a
B , (3)
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such that u‖ = uE + up + uk. The results are shown in figures 1 and 2 for
low and high density cases respectively. Recall that it was previously found
that the trend of the NEO data for these cases qualitatively approaches
the deuterium ion measurements outside the separatrix as ρN → 1. For
the deuterium ions, the neoclassical component, uk, is small. For the low
density shot, the edge ion u‖ is mostly determined by the pressure gradient
component, up, while for the high-density shots the pressure gradient and Er

components are competing. This is true at both poloidal locations. Moving
from θ = 0◦ to θ = 255◦, B (which can clearly be seen in the above equations
as determining the poloidal dependence of u‖) increases so the magnitudes
of uE and up become smaller and the magnitude of uk becomes larger. It
appears that this is what is causing the less steep rise in u‖ in the edge
for θ = 255◦, i.e. the −up part, which is positive, is becoming smaller
and the −uE part, which is negative, is becoming larger in absolute terms.
The neoclassical component uk is negligible, specifically almost 100 times
smaller than up for the high-density case and more like 10 times smaller
for the low-density case. For the latter, −uk is negative in the edge, so the
B factor is bringing down the u‖ even more. It is not yet clear whether
there is any physics correlation between the ions and carbon since, while
the carbon u‖ is mostly determined by the Er component in the core, in
the edge all three parts are largely contributing. For carbon, even if the n
and T profiles were the same as for the ions (which they are not), the up

influence is reduced by the 1/Z factor, which allows the other components
to be more competitive. The uE component is the same as for the ions, but
the neoclassical part is much larger. Theoretically, it is also known that the
primary driving dynamics for the two species are quite different, i.e. in the
very heavy ion impurity limit, the impurity dynamics are mostly determined
by self-collisions while the light ion dynamics are mostly determined by the
cross-species collision coupling. Overall, similar results were found in the
co-NBI phase (the data in figures 1 and 2 is during the counter-NBI phase),
as well as for ECH-injected plasmas, and the main conclusion is that the
carbon velocities do not fully reflect the deuterium velocities in the edge.
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Figure 1: Radial profiles of the deuterium ion and carbon impurity parallel
flows from NEO for low-density DIII-D L-mode shot #134046 at t=2.5s
(ne = 1.8e13cm−3) at θ = 0◦ (outboard midplane) and θ = 255◦ (near the
bottom of the tokamak). The radial electric field (ue), pressure gradient
(up), and neoclassical components (uk) are also shown.
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Figure 2: Radial profiles of the deuterium ion and carbon impurity parallel
flows from NEO for high-density DIII-D L-mode shot #134046 at t=2.5s
(ne = 3e13cm−3) at θ = 0◦ (outboard midplane) and θ = 255◦ (near the
bottom of the tokamak). The radial electric field (ue), pressure gradient
(up), and neoclassical components (uk) are also shown.
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The effects of orbit squeezing on the neoclassical transport in the core
and edge are being studied with NEO via solution of the hierarchy of Hazel-
tine drift-kinetic equations ordered in ρ∗i. For verification and insight, an
analytic solution is being derived for the simple case of a single ion species
and zero temperature gradient. The first-order solution is given by

f1 = F
v‖

Ωc

, (1)

where

F (r, ε) = −

I

ψ′
f0

(

d lnn0

dr
+

ze

T0

dΦ0

dr

)

. (2)

For the second-order solution, we assume s-α geometry for simplicity. While
the first-order solution is independent of the collisional regime, the higher-
order solutions are not. In the banana regime, we find the second-order
solution is given as follows to lowest-order in ε and ν:

f2 ∼ G

[

−

1

2

v2
‖

Ω2
c

−

µ

B0
Ω2

c +
ε

Ω2
c0

(

1 +
5

6
ε2

)

]

. (3)

In the Pfirsch-Schlüter regime, we find the second-order solution is given as
follows to lowest-order in 1/ν:

f2 ∼ −G
ε

Ω2
c0

4

5

(

B2
0

B2
− 1 −

3

2
ε2

)

. (4)

Here we have defined

G(r, ε) =
I

ψ′

(

∂F

∂r
+

ze

T0

dΦ0

dr
F

)

. (5)
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Figures 1 and 2 show a comparison of the NEO results and the analytic
formulas. Good agreement is found in both collision limits.

The transport coefficients from the second-order solution are zero for
up-down symmetric plasmas and thus the third-order solution is needed to
study higher-order finite-orbit-width and orbit squeezing effects. However,
the third-order solution is not yet well-understood in an analogous way due
to the difficulty with analytic treatment of the collisional dynamics. Nev-
ertheless, the approximations needed to isolate the orbit squeezing factor
(∝ ∂2Φ0

∂r2

a

Ln

) are being explored and the dominate higher-order effects in
DIII-D L-mode and H-mode plasmas will be studied.
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Figure 1: Density moment of the P1 component of the first-order distribution
function (left) with the analytic solution (black dashed line) and the P0

and P2 components of the second-order distribution function (right top and
right bottom) with the analytic approximations in the banana regime (black
dashed line) and in the Pfirsch-Schlüter regime (black dotted line). Here
the Pn’s are Legendre polynomials in ξ. The NEO results are given by
the red curves. The parameters for this case are: s-α geometry, R0/a=5,
ρ0i=0.001, q(r) = 3r/a (such that I/ψ′ is constant), ∂Φ0

∂r
(r) = 20(r/a−0.5),

n0(r) = exp(−r/a), T0(r)=1. A single ion species is simulated and the full
Hirshman-Sigmar collision operator is used. These results are for the banana
regime, (a/vti)τ

−1
ii =1e-4.
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Figure 2: Density moment of the P1 component of the first-order distribution
function (left) with the analytic solution (black dashed line) and the P0

and P2 components of the second-order distribution function (right top and
right bottom) with the analytic approximations in the banana regime (black
dashed line) and in the Pfirsch-Schlüter regime (black dotted line). The
NEO results are given by the red curves. The parameters are the same as
for figure 1 but in the highly collisional regime, (a/vti)τ
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An analytic solution for the hierarchy of distribution functions is being
derived to verify the NEO implementation of higher-order finite-orbit-width
terms and to develop insight regarding the scaling of the neoclassical trans-
port due to orbit squeezing. We consider a simple case of a single ion
species with uniform temperature (i.e. zero temperature gradient) and s-α
geometry. For the collision operator, we consider HS0. The first-order and
second-order distribution functions for these cases were given in the July re-
port for both the Pfirsch-Schlüter and banana collisional regimes. However,
for the third-order solution we focus only on the former, since we found a
simple analytic solution in the banana regime to be intractable.

We consider the hierarchy of drift-kinetic equations in (ε, ξ) velocity-
space coordinates and, using an expansion of the distribution function in
Legendre polynomials P in ξ, we terminate the series of equations at P2,
due to the large collision frequency limit. First, to test the method, we have
derived an analytic formula for the first-order distribution function in this
regime for finite temperature gradient. The solution for the P0, P1, and P2,
components is given as follows to lowest order in ε and 1/τ−1

ii :

g(0)
1 = −

JψB
√

2εvta
ε sin(θ)

[

St

√
2C(ε3/2) + C(c1(ε))

]

(1)

g(1)
1 = −

√
2
B0

B

(

Snε1/2 + Stε
3/2

)

+ c1(ε)
B

B0
(2)

g(2)
1 = −

√
2εvta

3νdJψB

1

B0

∂B

∂θ
c1(ε) (3)
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where the source terms are given by

Sn =
I

ψ′

vta

Ωca0

(

∂ lnn

∂r
+

zae

T0a

∂Φ0

∂r
−

3

2

∂ lnT

∂r

)

(4)

St =
I

ψ′

vta

Ωca0

∂ lnT

∂r
, (5)

and the constant is found to be

c1(ε) = St

√
2

[

ε3/2 − ε1/2 Iε(ε3/νd)

Iε(ε2/νd)

]

. (6)

In the limit of zero temperature gradient, only the P1 component is non-
zero and we recover our previous result. With finite temperature gradient,
we find that the ion parallel flow coefficient is ki = −2.37. Note that this
differs from the reported value of −1.6 for the full linearized operator. A
comparison of NEO with the analytic results is shown in figures 1 and 2.
Here NEO uses 18 Legendre polynomials. The agreement becomes better if
only 3 Legendre polynomials are used in the numerical calculation, though
it is quite good also with the full spectrum.

An analogous result has been derived for the third-order distribution
function in the zero temperature gradient limit. Comparisons with NEO
are still in progress.
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Figure 1: Density moment of the P1, P0, and P2 components of the first-order
distribution function comparing the NEO results (red) with the analytic
theory in the the Pfirsch-Schlüter regime (black dashed lines) at r/a =
0.5. The parameters for this case are: s-α geometry, R0/a=5, ρ0i=0.001,
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A single ion species is simulated and the zeroth-order Hirshman-Sigmar
collision operator is used. These results are for the highly-collisional regime,
(a/vti)τ

−1
ii =10.
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An analytic solution for the third-order distribution function describ-
ing non-local neoclassical transport in the Pfirsch-Schlüter regime has been
derived. We consider the hierarchy of drift-kinetic equations in (ε, ξ) co-
ordinates and use an expansion of the distribution function in Legendre
polynomials in ξ, terminating the series of equations at P2 due to the large
collision frequency limit. For simplicity, we assume a single ion species,
s-α geometry, zero temperature gradient, and the zeroth-order Hirshman-
Sigmar collision model. Using the second-order solution given in our July
2010 report, we find that the solution for the P0, P1, and P2 components of
the third-order distribution function is as follows to first order in 1/τ−1

ii and
to second-order in ε:

f (0)
3 =

1

Ω3
0

JψB
√

ε

2

5
C1(ε

3/2)

[

Hε2 sin(2θ) − 6
I

ψ′

ε2

R0
G sin(θ)

]

(1)

f (1)
3 =

1

Ω3
0

4

5
√

2

{

H

[

B3
0

B3
− 2

B

B0

(

1 +
3

2
ε2

)

]

− HK
5

2
ε2

B

B0
ε1/2

+6
I

ψ′

ε

R0
G

[

−
B0

B
ε3/2 +

B

B0

(

1 −
1

2
ε2

)

(

ε3/2 − Kε1/2
)

]

+
I

ψ′

ze

m

∂Φ0

∂r
Gε1/2

[

1

2

B3
0

B3
+ 2

B0

B

(

1 +
3

2
ε2

)

+
3

2

B

B0

]}

(2)

f (2)
3 =

1

Ω3
0

(

4

15

1

νDJψB

)

1

B0

∂B

∂θ

{

H

[(

B4
0

B4
− 1 − ε2

)

ε2 +
5

2
Kε2ε

]

−6
I

ψ′

ε

R0
G(ε2 − Kε) +

3

2

I

ψ′

ze

m

∂Φ0

∂r
G

(

B4
0

B4
− 1

)

ε

}

, (3)
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where Kv2
t = (

∫

∞

0 dε e−ε/v2
taε7/2ν−1

D )/(
∫

∞

0 dε e−ε/v2
taε5/2ν−1

D ) and the equilibrium-
scale source functions are given by

F (r, ε) = −
I

ψ′
f0

(

d lnn0

dr
+

ze

T0

dΦ0

dr

)

(4)

G(r, ε) =
I

ψ′

(

∂F

∂r
+

ze

T0

dΦ0

dr
F

)

(5)

H(r, ε) =
I

ψ′

(

∂G

∂r
+

ze

T0

dΦ0

dr
G

)

. (6)

For the P0 component, the collision term is defined with respect to the
zeroth-order Hirshman-Sigmar operator as

C1(ε
3/2) = −νsε

3/2 + νsε
1/2

∫

∞

0 dε e−ε/v2
t ε5/2νS

∫

∞

0 dε e−ε/v2
t ε3/2νS

, (7)

though the solution is also valid for the Connor model with νS = νD. Good
agreement is found between the analytic theory and the NEO results, as
shown in figure 1. From the analytic solution, we can compute the third-
order parallel flow:
〈

u3
‖

vta

B

B0

〉

1

ρ3
0a

= −
H

f0
Kε2 −

G

f0

12

5

I

ψ′

ε

R0
K +

I

ψ′

ze

T0

∂Φ0

∂r

G

f0

(

8

5
+

9

5
ε2

)

. (8)

Noting that the usual “orbit-squeezing” factor (∝ ∂2Φ0

∂r2

a
Ln

) is contained

within H, we thus find that the flow is O(ε2) smaller in this factor than
the Hinton-Kim banana regime theory.

Both our banana regime and Pfirsch-Schlüter regime higher-order an-
alytic calculations have neglected the nonlinear collision operator without
justification. This is also done in the NEO implementation of the hierarchy
of equations. However, re-analysis shows that inclusion of the nonlinear col-
lision is crucial. For example, for the second-order solution in the banana
regime, we find that

f2 =
1

Ω2
0

(

2

3
ε − µB0

)

F 2

f0
+

1

Ω2
0

(−2ε + µB0) ε cos(θ)G (9)

Thus, comparing this with our previous solution, we find that it is O(ε)
larger. The solubility condition essentially removes the θ-average of the
collisionless part of the solution, thus reducing its contribution to O(ε).
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The largest component then results from the nonlinear collision dynamics.
Similarly, in the Pfirsch-Schlüter regime, we find that the solution is

f2 = −
ε

Ω2
0

(

B2
0

B2
− 1 −

3

2
ε2

) (

4

5
G +

7

15

F 2

f0

)

+
ε

Ω2
0

2

3

B2
0

B2

F 2

f0
P2(ξ) . (10)

An upgrade of NEO to implement the full linearized Fokker-Planck colli-
sion operator and to implement explicit evaluation of the nonlinear operator
in the higher-order equations is in progress.
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Figure 1: Density moment of the P1, P0, and P2 components of the third-
order distribution function comparing the NEO results (red) with the an-
alytic theory in the the Pfirsch-Schlüter regime (black dashed lines) at
r/a = 0.5. The parameters for this case are: s-α geometry, R0/a=5,
ρ0i=0.001, q(r) = 3r/a (such that I/ψ′ is constant), ∂Φ0

∂r (r) = 2(r/a − 0.5),

n0(r) = 2e−r/a, T0(r) = 1, (a/vti)τ
−1
ii =10. A single ion species is simulated

and the zeroth-order Hirshman-Sigmar collision operator is used.
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NEO is being upgraded to implement the full linearized Fokker-Planck
collision operator. We retain an expansion of Legendre polynomials in ξ,
but for energy, we assume a monomial expansion in normalized velocity,
xa = v/(

√
2vta). Thus, we expand the n-th order perturbed distribution

function as

fna = f0a

∞
∑

l=0

∞
∑

m=0

f̂ lm
na Pl(ξ)x

αm+βl
a , (1)

where optimal values of the integers α and β will be determined. With this
expansion and applying the integral

I ≡
(

n0a

(2π)3/2v3
ta

)−1 (

2l + 1

2

)
∫ 1

−1
dξPl(ξ)

∫ ∞

0
dxax

αm+βl+2
a , (2)

the collision operator collocation integrals for the test and field particle
operator components can be written as

I[CT
ab(f1a, f0b)] = τ−1

ab

√

d
π

∑

l′m′ f̂ l′m′

1a δll′ {
−l(l + 1) [F (d, α(m + m′) + 2βl − 1, 0) − F (d, α(m + m′) + 2βl − 3, 2)]

+4(αm + βl)
[(

1 − T0a

T0b

)

F (d, α(m + m′) + 2βl − 1, 2)

−1
2(αm′ + βl)F (d, α(m + m′) + 2βl − 3, 2)

]}

, (3)

I[CF
ab(f0a, f1b)] = τ−1

ab
2√
π
d3/2 ∑

l′m′ f̂ l′m′

1b δll′d(1/2)(αm′+βl) {
ma

mb
(1 + d)−(1/2)(α(m+m′)+2βl+3)Γ

[

1
2(α(m + m′) + 2βl + 3)

]

1



− 2
l+1/2

[

ma

mb
− l

(

1 − ma

mb

)]

F (d, αm + βl − l + 1, αm′ + βl + l + 2)

− 2
l+1/2

[

1 + l
(

1 − ma

mb

)]

F̄ (d, αm + βl + l + 2, αm′ + βl − l + 1)

− l(l−1)
l2−1/4F (d, αm + βl − l + 3, αm′ + βl + l + 2)

− l(l−1)
l2−1/4 F̄ (d, αm + βl + l + 2, αm′ + βl − l + 3)

+ (l+1)(l+2)
(l+3/2)(l+1/2)F (d, αm + βl − l + 1, αm′ + βl + l + 4)

+ (l+1)(l+2)
(l+3/2)(l+1/2) F̄ (d, αm + βl + l + 4, αm′ + βl − l + 1)

}

, (4)

The first term in the test particle operator represents the Lorentz operator
and the second term represents the energy diffusion. Note that both com-
ponents are diagonal in l. Here we have defined d = v2

ta/v2
tb and we have

defined the double integral functions

F (d, m, n) =
∫ ∞

0
dxe−x2

xm
∫ x

0
dye−y2dyn , (5)

F̄ (d, m, n) =
∫ ∞

0
dxe−x2

xm
∫ ∞

x
dye−y2dyn . (6)

Numerically stable algorithms for the calculation of the double integral func-
tions, including for negative exponents, which can also maintain high accu-
racy in the limits of large and small d (e.g. for electron-ion and ion-electron
collisions) are being explored.

Similar expressions have been derived for the Connor operator and HS0
operator, which will also be implemented using the new energy expansion.
For example, HS0 contains the same Lorentz term and the following restoring
terms:

I(Rab) =
(

mbn0bvtb

man0avta

)

τ−1
ab

T0a

T0b

(

1 + ma

mb

)

4√
dπ

F (d,αm+β,2)
F (d,1,2)

∑

l′m′ f̂ l′m′

1b δl,1δl′,1F (1/d, αm′ + β, 2) (7)

I(Ua) = τ−1
ab 2

√

d
π

∑

l′m′ f̂ l′m′

1a δl,1δl′,1 [F (d, α(m + m′) + 2βl − 1, 0)

−F (d, α(m + m′) + 2βl − 3, 2)

−2T0a

T0b

(

1 + ma

mb

)

F (d, α(m + m′) + 2βl − 1, 2)
]

(8)

The collisionless terms in the drift-kinetic equation are tri-diagonal in l.
All of the energy collocation integrals for these terms and for the transport
coefficients can be written in terms of Γ functions.
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The NCLASS subroutine has been integrated directly into NEO. This
provides a direct comparison between NEO and NCLASS for the same
plasma parameters. A driver program was written to convert the NEO
geometry and equilibrium plasma parameters into the NCLASS input for
experimental profiles. The driver works for multiple ion species and general
geometry. A future upgrade will also do this for local mode. A comparison
between NEO and NCLASS for the poloidal flows and bootstrap current for
a DIII-D L-mode discharge is shown in figure 1. Here the NEO simulations
were done using the HS0 collision operator (equivalent to the NCLASS colli-
sion model) and in the weak rotation limit (since NCLASS does not include
rapid toroidal rotation effects). The two codes agree qualitatively well over
the entire profile. Little effect was seen from the models for potato orbits
and orbit-squeezing in NCLASS for this case.

The upgrade of the NEO collision model to the full linearized Fokker-
Planck operator is continuing. A monomial expansion in normalized velocity,
xa = v/(

√
2vta), has been implemented. Here we expand the n-th order

perturbed distribution function as

fna = f0a

Nξ
∑

l=0

Nε
∑

m=0

f̂ lm
na Pl(ξ)x

αm+βl
a . (1)

Presently, we use α = 1 and β = 0. Preliminary results with the Connor
collision operator are shown in figure 2. We find a rapid loss in accuracy
(including a loss of ambipolarity) as Nε increases, due to round-off errors.
To correct this, we instead expand the distribution function in the more

1



well-behaved and bounded associated Laguerre polynomials, i.e.

fna = f0a

Nξ
∑

l=0

Nε
∑

m=0

f̂ lm
na Pl(ξ)L

k(l)
m (xα

a )xβl
a . (2)

The integral applied to the kinetic equation to form the matrix equation
thus becomes

I ≡

(

n0a

(2π)3/2v3
ta

)−1 (

2l + 1

2

)
∫ 1

−1
dξPl(ξ)

∫ ∞

0
dxaL

k(l)
m (xα

a )xβl+2
a . (3)

Presently, we take k = 0, α = 1, β = 0. (Note that k = l + 1/2, α = 2,
β = 1 corresponds to the Burnett function expansion. The optimal values
for these parameters is still to be determined.) In the implementation, the
matrix elements in this basis are actually formed from the monomial basis
elements, noting that the Laguerre polynomials can be constructed as

Lk
m(xα

a ) =
m

∑

j=0

(−1)j (m + k)!

(m − j)!(k + j)!j!
xαj . (4)

This will be essential for the full linearized operator (See our Oct report.
The double integral functions which arise in the monomial basis can be
computed accurately from Gamma and Beta functions.) The results, shown
in figure 2, show much better convergence with Nε. Tests for multi-species
plasmas and implementation of the HS0 and full linearized Fokker-Planck
collision operators are in progress.
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Figure 1: Radial profiles of the carbon impurity, deuterium ion, and elec-
tron neoclassical poloidal flows and the bootstrap current for DIII-D L-
mode shot #140996 comparing NEO and NCLASS simulation results. The
experimentally-measured value for the carbon flow is also shown.
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Our manuscript describing the new GYRO eigenvalue solver and appli-
cations to linear gyrokinetic studies of compressional magnetic field effects in
NSTX-like plasmas has been published: E. Belli and J. Candy, ”Fully Elec-
tromagnetic Gyrokinetic Eigenmode Analysis of High-Beta Shaped Plas-
mas”. Phys. Plasmas, vol. 17, 112314 (2010).

For various DIII-D H-mode discharges, NEO was used to systematically
study finite-orbit-width (FOW) effects due to steep gradients and access the
validity of local neoclassical transport in the near-edge region. The simu-
lations were done with two species (deuterium ions and kinetic electrons).
Impurities were not included since the equilibrium profile data came from
the PEQDSK file format, which presently does not include this data. Fully
general geometry (including up-down asymmetry effects) was included in
the simulations and the zeroth-order Hirshman-Sigmar collision operator
was used. Three discharges were studied: 1) #132010 (typical pedestal
width and height), 2) #132003 (narrow pedestal), and 3) #132007 (large
pedestal width). The equilibrium profiles and comparison of the gradient-
scale lengths with the gyro-radius are shown in figure 1. We have first
focused on temperature and density gradient-driven FOW effects, without
orbit-squeezing effects (i.e. Er = 0). The results from the higher-order NEO
calculations are shown in figures 2-4. A summary of the interpretation of
the results is as follows:

1. No break-down of local neoclassical theory is observed for quantities
which vary on the electron scale (i.e. Qe)

2. Local neoclassical theory appears to be valid for the bootstrap current
in the near-edge.

1



3. Only a moderate finite-orbit-width effect is found for the ion energy
flux. Nonlinear-F may be required for Qi for ψN > 0.93. But other
effects not included here (such as ion orbit loss) may be more important
in this region.

4. Up-down asymmetry flux-surface shaping effects on the non-local trans-
port are weak. This is indicated by the fact that the break-down in Qi

occurs mainly in the fourth-order component of the flux. (The third-
order component is exactly zero for up-down symmetric plasmas.)

5. Adequate numerical resolution is essential. Specifically, high θ-grid
resolution is needed in the edge, due to the strong shaping effects. In
fact, we find that inadequate resolution artificially enhances the FOW
effect. For these simulations, we found convergence with Nθ = 31,
which is two times the standard resolution.

Results including the electric field are shown in figure 5. Here we find that
there are no additional FOW effects due to Er in the near-edge. However,
in the near-axis region, orbit-squeezing-driven effects due to potato orbits
extend further into the core.
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Figure 1: Profile variation of the equilibrium-scale density and ion and
electron temperatures for DIII-D H-mode discharges #132010 (top left),
#132003 (top right), and #132007 (bottom).
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Work has continued on the implementation of the full linearized Fokker-
Planck collision operator in NEO. A pure monomial basis function expansion
in normalized velocity (xa = v/(

√
2vta), i.e.

f1a = f0a

Nξ
∑

l=0

Nε
∑

m=0

f̂ lm
1a Pl(ξ)x

2m+βl
a , (1)

unsurprisingly leads to an ill-conditioned matrix. Thus, variations of a La-
guerre expansion in energy of the form

f1a = f0a

Nξ
∑

l=0

Nε
∑

m=0

f̂ lm
1a Pl(ξ)L

k(l)
m (x2

a)x
βl
a , (2)

were explored, constructing the matrix elements from the monomial mo-
ments as described in our previous report. A simple test case with a single
ion species and adiabatic electrons is used and comparisons are made with
our previous implementation of the HS0 collision operator using a Cheby-
shev expansion in re-normalized velocity (see figure 1). As shown in figure
2, we have found that the Sonine expansion (k(l) = l + 1/2, β = 1) has
issues with numerical accuracy, specifically with numerical precision loss for
the high-power elements due to the xβl

a factor. This was confirmed by com-
paring the matrix elements computed using standard double precision with
those computed using quad precision.

A traditional Laguerre expansion (k(l) = 1/2, β = 0), which we call
“Laguerre-0”, is also not ideal. The convergence results for this method are
shown oin figure 3. While the convergence plots look smoother than the

1



Sonine convergence plots (indicating that this method does not appear to
have the same precision loss problem, at least not up to N=20), even at
large collision frequency the convergence is very slow, particularly for u‖

and, in accordance, the ambipolarity is not good. This is most likely due
to the fact this method is really expanding f in powers of ε, so the odd-l
Legendre components of f are slow to converge because it has to use a lot of
polynomials to make functions that look like half-powers of energy. It also
lacks the extra xl factor in the f -expansion which force the higher-powers
in f to go to zero more quickly.

To test this, we have compared these results with a “Laguerre-1” method
(i.e. k(l) = 3/2, βl

.
= 1), as shown in figure 4. Here we find that the energy

flux convergence is nearly the same at small τ−1
ii , but the u‖ convergence is

much better and the ambipolarity is good. However, the results also show
that, at large collision frequency, the energy flux convergence is very slow
and appears wrong even at N=20. This is most likely due to the fact that
the l = 0 component of f does not really go the zero as x → 0 (it should go
to a constant), so this method does not represent this component accurately.

The optimal expansion seems to be a combination of the two Laguerre
methods, i.e.

f1a = f0a

Nε
∑

m=0



f̂0m
1a L1/2

m (x2
a) +

Nξ
∑

l=1

Pl(ξ)f̂
lm
1a L3/2

m (x2
a)xa



 . (3)

(A similar method using L1/2
0 for m = 0, xL3/2

1 for m = 1, and x2L5/2
m

for m > 1 was also tried and gave similar, though slightly worse results at
low collision frequency.) These results are shown in figure 5. The method
looks as good as the old Chebyshev method with the less-complicated HS0
operator.

The next step is to optimize the method for inclusion of kinetic electrons.
Preliminary results find that numerical accuracy and overflow/underflow
issues arise, even at relatively small values of N , for the cross-species field
particle component of the operator.
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Figure 1: (left) Variation of the ion energy flux and ion particle flux with
collision frequency for the case of a single ion species and adiabatic electrons
at various number of grid points N = Nθ = Nξ = Nε. (right) Convergence
of the ion energy flux and ion parallel flow with N at various collision fre-
quencies. These results used the HS0 collision operator and a Chebyshev
expansion in re-normalized velocity.
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Figure 2: (left) Variation of the ion energy flux and ion particle flux with
collision frequency for the case of a single ion species and adiabatic electrons
at various number of grid points N = Nθ = Nξ = Nε. (right) Convergence
of the ion energy flux and ion parallel flow with N at various collision fre-
quencies. These results used the full linearized FP collision operator and a
Sonine expansion in normalized energy.
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Figure 3: (left) Variation of the ion energy flux and ion particle flux with
collision frequency for the case of a single ion species and adiabatic electrons
at various number of grid points N = Nθ = Nξ = Nε. (right) Convergence
of the ion energy flux and ion parallel flow with N at various collision fre-
quencies. These results used the full linearized FP collision operator and a
Laguerre-0 expansion in normalized energy.
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Figure 4: (left) Variation of the ion energy flux and ion particle flux with
collision frequency for the case of a single ion species and adiabatic electrons
at various number of grid points N = Nθ = Nξ = Nε. (right) Convergence
of the ion energy flux and ion parallel flow with N at various collision fre-
quencies. These results used the full linearized FP collision operator and a
Laguerre-1 expansion in normalized energy.
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